Factor común
El resultado de multiplicar un binomio a+b por un término c se obtiene aplicando la propiedad distributiva:
Para esta operación existe una interpretación geométrica, ilustrada en la figura adjunta. El área del rectángulo es
-
(el producto de la base por la altura), que también puede obtenerse como la suma de las dos áreas coloreadas: ca y cb.
Ejemplo:
Binomio al cuadrado o cuadrado de un binomio
Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Así:
Un trinomio de la expresión siguiente: se conoce como trinomio cuadrado perfecto.
Cuando el segundo término es negativo, la ecuación que se obtiene es:
En ambos casos el signo del tercer término es siempre positivo.
Ejemplo:
Simplificando:
Producto de dos binomios con un término común
Cuando se multiplican dos binomios que tienen un término común, el cuadrado del término común se suma con el producto del término común por la suma de los otros, y al resultado se añade el producto de los términos diferentes.
Ejemplo:
Agrupando términos:
Luego:
Producto de dos binomios conjugados
Dos binomios conjugados se diferencian sólo en el signo de la operación. Para su multiplicación basta elevar los monomios al cuadrado y restarlos (obviamente, un término conserva el signo negativo), con lo cual se obtiene una diferencia de cuadrados.
Ejemplo:
Agrupando términos:
A este producto notable también se le conoce como suma por la diferencia.
Polinomio al cuadrado
Para elevar un polinomio de cualquier cantidad de términos se suman los cuadrados de cada término individual y luego se añade el doble de la suma de los productos de cada posible par de términos.
Ejemplo:
Multiplicando los monomios:
Agrupando términos:
Luego:
Binomio al cubo o cubo de un binomio
Para calcular el cubo de un binomio se suman, sucesivamente:
- El cubo del primer término con el triple producto del cuadrado del primero por el segundo.
- El triple producto del primero por el cuadrado del segundo.
- El cubo del segundo término.
Identidades de Cauchy:
Ejemplo:
Agrupando términos:
Si la operación del binomio implica resta, el resultado es:
- El cubo del primer término.
- Menos el triple producto del cuadrado del primero por el segundo.
- Más el triple producto del primero por el cuadrado del segundo.
- Menos el cubo del segundo término.
Identidades de Cauchy:
Ejemplo:
Agrupando términos:
Identidad de Argand
Identidades de Gauss
Identidades de Legendre
Identidades de Lagrange
Otras identidades
Dado que la notabilidad de un producto es un concepto ambiguo, no existe una lista determinante que indique a cuáles productos se les puede considerar notables, y a cuáles no. A otras fórmulas, aunque menos usadas que las anteriores, en ciertos contextos se les puede calificar de productos notables. Entre ellas se destacan:
Adición de cubos:
Diferencia de cubos:
Es más frecuente listar las dos expresiones anteriores como fórmulas de factorización, ya que los productos no tienen una forma particularmente simétrica, pero el resultado sí (contrástese, por ejemplo, con la fórmula de binomio al cubo).
La suma y la diferencia de cubos se pueden generalizar a sumas y diferencias de potencias enésimas (o n - ésimas: xn).
Suma de potencias enésimas:
-
Si -sólo si- n es impar,
Diferencia de potencias enésimas:
Las fórmulas de binomio al cuadrado y binomio al cubo se pueden generalizar mediante el teorema del binomio.
Para representar un cubo como suma de dos cuadrados existe una fórmula ingeniosa: